Communication

Crystallographic Characterization of the $\mathrm{Z} / \mathrm{\beta}$-Peptide 14/15-Helix

Soo Hyuk Choi, Ilia A. Guzei, and Samuel H. Gellman
J. Am. Chem. Soc., 2007, 129 (45), 13780-13781•DOI: 10.1021/ja0753344•Publication Date (Web): 19 October 2007

Downloaded from http://pubs.acs.org on February 14, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 8 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

ACS Publications

Crystallographic Characterization of the α / β-Peptide $14 / 15$-Helix

Soo Hyuk Choi, Ilia A. Guzei, and Samuel H. Gellman*
Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706

Received July 17, 2007; E-mail: gellman@chem.wisc.edu

The search for oligomers that adopt specific conformations ("foldamers") ${ }^{1}$ has recently included many efforts to identify backbones containing more than one class of subunit. Combinations involving α - and β-amino acids have been especially popular, ${ }^{2-12}$ and other systems have been examined as well. ${ }^{13-17}$ In early studies, we found that folding of short α / β-peptides with a $1: 1$ alternation of α - and β-residues is promoted by β-residues that have a fivemembered ring constraint, such as trans-2-aminocyclopentanecarboxylic acid (ACPC). ${ }^{4 \mathrm{a}-\mathrm{c}}$ Short ACPC-containing α / β-peptides display numerous NOEs between protons on non-adjacent residues, which can be rationalized by proposing the adoption of two different helical conformations that interconvert rapidly on the NMR time scale, one containing $i, i+3 \mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N} \mathrm{H}$-bonds and the other containing $i, i+4 \mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N} \mathrm{H}$-bonds. ${ }^{4 \mathrm{a}}$ These secondary structures were designated the "11-helix" and the "14/15-helix", respectively, based on the number of atoms in the H -bonded rings. Contemporaneous studies by Reiser et al. revealed a different type of helical folding, involving $i, i-2 \mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N} H$-bonds, by α / β peptides containing cis-2-aminocyclopropanecarboxylic acid residues. ${ }^{3}$ Subsequent work of Sharma, Kunwar, and co-workers has identified a "mixed" helix, containing both $i, i+3 \mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ and $i, i-1 \mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ H-bonds, in α / β-peptides lacking cyclically constrained residues. ${ }^{5}$ Hofmann et al. have provided a comprehensive computational evaluation of helix types available to α / β peptides containing a 1:1 backbone alternation. ${ }^{6}$

To date, the only reported crystallographic data for a $1: 1 \alpha / \beta$ peptide have been obtained for octamer 1, which contains ACPC and α-aminoisobutyric acid (Aib). ${ }^{4 \mathrm{c}} \alpha / \beta$-Peptide 1 displays an 11 helical conformation in the solid state. Since that structure was reported, Seebach et al. have presented 2D NMR results for α / β peptides containing Aib and acyclic β-residues, which were deduced to adopt $14 / 15$-helix-like conformations lacking internal H-bonds. ${ }^{7}$ Jagadeesh et al. have reported 2D NMR analysis of α / β-peptides containing l-Ala and cis- β-furanoid sugar amino acid residues. ${ }^{9}$ These workers have concluded that 11- and 14/15-helix H-bond patterns are adopted simultaneously, that is, helical folding involves the formation of bifurcated H -bonds (simultaneous $i, i+3$ and $i, i+4$ $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ interactions). We considered this type of hybrid helix when we originally observed that neither the 11- nor the 14/15helix could entirely explain the NOE patterns observed for short ACPC-containing α / β-peptides, but we discarded this hypothesis in favor of rapid interconversion between 11- and 14/15-helical conformations. ${ }^{4 a}$ In light of subsequent developments, ${ }^{7,9}$ however, the existence of an internally H -bonded $14 / 15$-helix as originally proposed may seem uncertain. This issue is important because the 14/15-helical secondary structure has been used as a basis for function-oriented foldamer design. ${ }^{4 b, d, f, g}$ Here we resolve this uncertainty by reporting the first crystal structure of an α / β-peptide in the $14 / 15$-helical conformation.

We wondered whether the Aib residues in $\mathbf{1}$ might favor the 11-helix over the $14 / 15$-helix. As a first step toward addressing this question, we prepared and crystallized $\mathbf{2}$, the analogue of $\mathbf{1}$ in

1 Boc-Aib-ACPC-Aib-ACPC-Aib-ACPC-Aib-ACPC-OBn Boc-Ala-ACPC-Aib-ACPC-Aib-ACPC-Aib-ACPC-OBn 3 Boc-Ala-ACPC-Aib-ACPC-Aib-ACPC-Aib-ACPC-Aib-OBn
which the N -terminal Aib residue is replaced by alanine. α / β Peptide 2 adopts a chimeric conformation in the solid state (Figure 1). The carbonyl of the N -terminal Boc group forms an $i, i+4 \mathrm{C}=$ $\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ H-bond (14-membered ring), but the remainder of the backbone amide groups are involved in $i, i+3 \mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ H-bonds (11-helix). This observation suggested that $\mathbf{2}$ might represent an α / β-peptide on the brink of forming a full-fledged $14 / 15$-helix.

Among α-amino acid oligomers, the α-helix $(i, i+4 \mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ H-bonding) is favored over the 3_{10}-helix ($i, i+3 \mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ H-bonding) by increasing peptide length, ${ }^{18}$ and 2D NMR evidence suggests a similar trend among α / β-peptides containing ACPC. ${ }^{4 \mathrm{~b}, \mathrm{~g}}$ We therefore examined 3, the homologue of $\mathbf{2}$ containing one additional residue at the C-terminus. We reasoned that the $i, i+4$ $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ H-bonding observed at the N -terminus of 2 might be induced to propagate throughout the entire molecule if the backbone were lengthened. Indeed, the crystal structure of 3 revealed a fully $14 / 15$-helical conformation.

The crystallographic data suggest that most intramolecular H -bonds in 1-3 have standard geometries. Thus, in 11-helical 1, the six $i, i+3 \mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ H-bonds display $\mathrm{H} \cdots \mathrm{O}$ distances of $1.9-$ $2.1 \AA, \mathrm{~N} \cdots \mathrm{O}$ distances of $2.8-2.9 \AA$, and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angles of $150-$ 170°. In the folded conformation of $\mathbf{2}$, the four $i, i+3 \mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ H -bonds have $\mathrm{H} \cdots \mathrm{O}$ distances of $2.0-2.1 \AA, \mathrm{~N} \cdots \mathrm{O}$ distances of $2.8-2.9 \AA$, and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angles of $150-180^{\circ}$, and the lone $i, i+4$ $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ H-bond has an $\mathrm{H} \cdots \mathrm{O}$ distance of $2.3 \AA$, an $\mathrm{N} \cdots \mathrm{O}$ distance of $3.1 \AA$, and an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle of 160°. In $14 / 15$-helical 3, five of the $i, i+4 \mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N} \mathrm{H}$-bonds have standard geometries, $\mathrm{H} \cdots \mathrm{O}$ distances of $2.1-2.2 \AA, \mathrm{~N} \cdots \mathrm{O}$ distances of 2.9-3.0 \AA, and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angles of $140-160^{\circ}$, while the $i, i+4 \mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ interaction at the N -terminus, $\mathrm{H} \cdots \mathrm{O}$ distance $=2.8 \AA$ and $\mathrm{N} \cdots \mathrm{O}$ distance $=3.5 \AA$, is a little longer than the conventional H-bond length limit ($\mathrm{H} \cdots \mathrm{O}$ distance $<2.5 \AA, \mathrm{~N} \cdots \mathrm{O}<3.9 \AA$). ${ }^{19}$ In only one case is there the possibility of bifurcated H -bonding: in addition to the $i, i+4 \mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N} \mathrm{H}$-bond at the C -terminus of $\mathbf{3}$, the amide proton of the last Aib residue is involved in an $i, i+3 \mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ interaction with poorer geometry ($\mathrm{H} \cdots \mathrm{O}$ distance $=2.8 \AA, \mathrm{~N} \cdots \mathrm{O}$ distance $=3.3 \AA, \mathrm{~N}-\mathrm{H} \cdots \mathrm{O}$ angle $\left.=116^{\circ}\right)($ Figure 2). Average backbone torsion angles are given in Table 1.

The crystallographic data for $\mathbf{1 - 3}$ are consistent with the original hypothesis that ACPC-containing α / β-peptides can adopt two distinct helical conformations, the 11 -helix and the $14 / 15$-helix. ${ }^{\text {a }}{ }^{a}$ It is perilous to extrapolate conformational behavior from the solid state to solution, but the fact that we see evidence for only one bifurcated H -bond in these structures appears to argue against the hypothesis of a regular hybrid helical conformation containing both $i, i+3$ and $i, i+4 \mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ H-bonds. The intriguing observation

Figure 1. Crystal structures of $\mathbf{2}$ and 3: (top) views perpendicular to helical axis; (bottom) views along the helical axis. Dotted lines indicate H-bonds. The solvent molecules, minor components of the disordered atoms, and non-amido hydrogen atoms are omitted for clarity.

Figure 2. Intramolecular hydrogen bonding patterns in the crystal structures of 2 and 3: (green) 14/15-helical, (blue) 11-helical. Dotted arrows indicate possible H -bonding interactions.

Table 1. Average Backbone Torsion Angles (deg) from α / β Peptides 1-3 ${ }^{\text {a }}$

	α-residue			β-residue			
	ϕ	ψ		ϕ	θ	ψ	
11-helix	$-55(3)$	$-40(6)$		$-96(4)$	$94(6)$	$-88(7)$	
14/15-helix	$-62(7)$	$-38(3)$		$-126(11)$	$83(6)$	$-119(15)$	

${ }^{a}$ Unfolded C-terminal residues were excluded.
of both H-bond patterns within octamer 2 seems to provide indirect support for the hypothesis that short α / β-peptides of this type can interconvert between 11- and 14/15-helical conformations in
solution, as originally proposed. ${ }^{4 a}$ The high-resolution structural data we have provided for the $14 / 15$-helix secondary structure should prove valuable for the design of α / β-peptides that are intended to perform specific functions.

Acknowledgment. This research was supported by NSF Grant CHE-0551920. S.H.C. was supported in part by The Samsung Scholarship Foundation. We thank Lara C. Spencer for the X-ray crystallographic analysis. X-ray equipment purchase was supported in part by grants from the NSF.

Supporting Information Available: Complete ref 14, experimental procedure, and crystallographic data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173. (b) Hecht, S., Huc, I., Eds. Foldamers: Structure, Properties and Applications; Wiley-VCH: Weinheim, Germany, 2007.
(2) Huck, B. R.; Fisk, J. D.; Gellman, S. H. Org. Lett. 2000, 2, 2607.
(3) De Pol, S.; Zorn, C.; Klein, C. D.; Zerbe, O.; Reiser, O. Angew. Chem., Int. Ed. 2004, 43, 511.
(4) (a) Hayen, A.; Schmitt, M. A.; Ngassa, F. N.; Thomasson, K. A.; Gellman, S. H. Angew. Chem., Int. Ed. 2004, 43, 505. (b) Schmitt, M. A.; Weisblum, B.; Gellman, S. H. J. Am. Chem. Soc. 2004, 126, 6848. (c) Schmitt, M. A.; Choi, S. H.; Guzei, I. A.; Gellman, S. H. J. Am. Chem. Soc. 2005, 127, 13130. (d) Sadowsky, J. D.; Schmitt, M. A.; Lee, H.-S.; Umezawa, N.; Wang, S.; Tomita, Y.; Gellman, S. H. J. Am. Chem. Soc. 2005, 127, 11966. (e) Schmitt, M. A.; Choi, S. H.; Guzei, I. A.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 4538. (f) Sadowsky, J. D.; Fairlie, W. D.; Hadley, E. B.; Lee, H. S.; Umezawa, N.; Nikolovska-Coleska, Z.; Wang, S. M.; Huang, D. C. S.; Tomita, Y.; Gellman, S. H. J. Am. Chem. Soc. 2007, 129, 139. (g) Schmitt, M. A.; Weisblum, B.; Gellman, S. H. J. Am. Chem. Soc. 2007, 129, 417. (h) Horne, W. S.; Price, J. L.; Keck, J. L.; Gellman, S. H. J. Am. Chem. Soc. 2007, 129, 4178. (i) Price, J. L.; Horne, W. S.; Gellman, S. H. J. Am. Chem. Soc. 2007, 129, 6376.
(5) (a) Sharma, G. V. M.; Nagendar, P.; Jayaprakash, P.; Krishna, P. R.; Ramakrishna, K. V. S.; Kunwar, A. C. Angew. Chem., Int. Ed. 2005, 44, 5878. (b) Srinivasulu, G.; Kumar, S. K.; Sharma, G. V. M.; Kunwar, A. C. J. Org. Chem. 2006, 71, 8395 .
(6) Baldauf, C.; Gunther, R.; Hofmann, H. J. Biopolymers 2006, 84, 408.
(7) Seebach, D.; Jaun, B.; Sebesta, R.; Mathad, R. I.; Flogel, O.; Limbach, M.; Sellner, H.; Cottens, S. Helv. Chim. Acta 2006, 89, 1801.
(8) Vilaivan, T.; Srisuwannaket, C. Org. Lett. 2006, 8, 1897.
(9) Jagadeesh, B.; Prabhakar, A.; Sarma, G. D.; Chandrasekhar, S.; Chandrashekar, G.; Reddy, M. S.; Jagannadh, B. Chem. Commun. 2007, 371.
(10) Olsen, C. A.; Bonke, G.; Vedel, L.; Adsersen, A.; Witt, M.; Franzhk, H.; Jaroszewski, J. W. Org. Lett. 2007, 9, 1549.
(11) Angelici, G.; Luppi, G.; Kaptein, B.; Broxterman, Q. B.; Hofmann, H. J.; Tomasini, C. Eur. J. Org. Chem. 2007, 2713.
(12) Zhu, X.; Yethiraj, A.; Cui, Q. J. Chem. Theory Comput. 2007, 3, 1538.
(13) Zhong, Z.; Zhao, Y. Org. Lett. 2007, 9, 2891.
(14) Gong, B.; et al. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 11583.
(15) Yang, D.; Li, W.; Qu, J.; Luo, S. W.; Wu, Y. D. J. Am. Chem. Soc. 2003, 125, 13018.
(16) For foldamers with heterogeneous backbones containing γ-amino acid residues, see: (a) Baldauf, C.; Gunther, R.; Hofmann, H. J. J. Org. Chem. 2006, 71, 1200. (b) Sharma, G. V. M.; Jadhav, V. B.; Ramakrishna, K. V. S.; Narsimulu, K.; Subash, V.; Kunwar, A. C. J. Am. Chem. Soc. 2006, 128, 14657. (c) Baruah, P. K.; Sreedevi, N. K.; Gonnade, R.; Ravindranathan, S.; Damodaran, K.; Hofmann, H. J.; Sanjayan, G. J. J. Org. Chem. 2007, 72, 636. (d) Vasudev, P. G.; Ananda, K.; Chatterjee, S.; Aravinda, S.; Shamala, N.; Balaram, P. J. Am. Chem. Soc. 2007, 129, 4039.
(17) For α-peptides containing a few other residue types, see: (a) Roy, R. S.; Gopi, H. N.; Ragothama, S.; Karle, I. L.; Balaram, P. Chem.-Eur. J. 2006, 12, 3295. (b) Roy, R. S.; Karle, I. L.; Ragothama, S.; Balaram, P. Proc. Natl. Acad. Sci U.S.A. 2004, 101, 16478.
(18) Bolin, A. K.; Millhauser, G. L. Acc. Chem. Res. 1999, 32, 1027 and references therein.
(19) McDonald, I. K.; Thornton, J. M. J. Mol. Biol. 1994, 238, 777.

JA0753344

